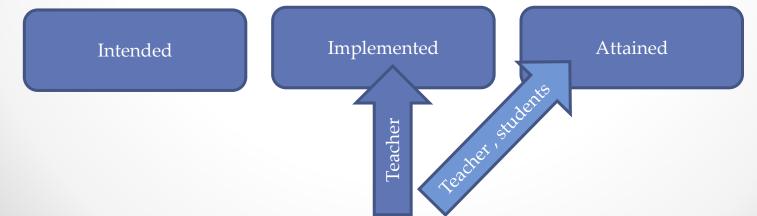
ICT in Education: Is it Still Challenge for Teachers?

Andris Grinfelds University of Latvia Faculty of Education, Psychology and Art

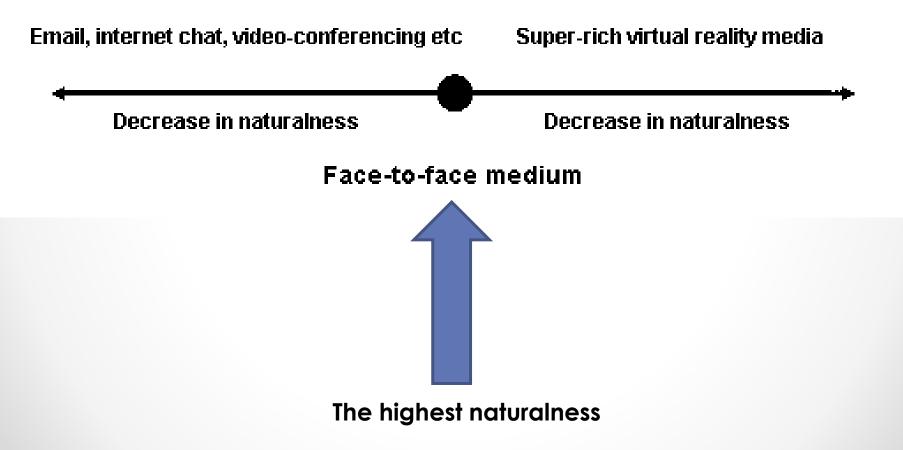
Research programs regarding ICT in schools


- IEA (International Association for Evaluation of Educational Achievement) COMPED (Computers in Education) (1989 – 1992 – 1995)
- IEA SITES (Second Information Technology in Education Study) (1996-2000)
- IEA SITES 2006
- OECD (Organisation for Economic Cooperation and Development) PISA (Programe of International Student Assessment) (1998 – 2013)

Results and problems regarding ICT in education indicated in the period 1990 – 2009

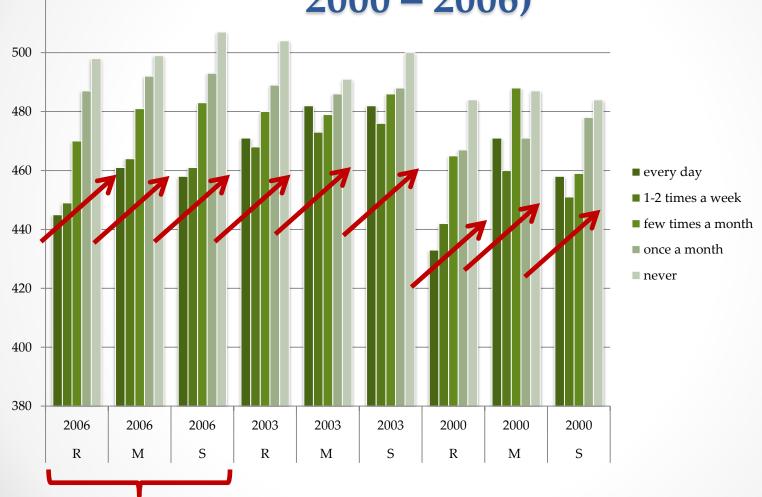
- Digital literacy is now a fundamental learning objective for all
- ICT in schools requires an extended professional role for teachers
- School Leadership and management must be fully commited to adopting ICT
- The need for pre-service and in-service professional development for teachers
 - To equip them with the technical skills for using ICT
 - To know how to incorporate ICT effectively into their teaching (how to get added value from ICT use).

ICT and curriculum


- Intended (theoretical, approved by Ministry of Education) – mostly general phrases about use of ICT
- Implemented School level policy how intended curriculum has been implemented into instructional process
- Attained what students get from instruction

Schools and ICT: today and future perspectives

- Computers (desktop)
- Computers (laptop)
- Intreractive whiteboards
- Digital Multimedia
- Graphic tablets
- E-book readers
- i-Pads
- i-Phones (smartphones)
- Pheripherals (printers, scanners, sensors etc.)
- Network
- Cloud Platform
- Software
 - o **General**
 - Educational
- Etc.


Media naturalness theory

Some «alarming» results

 OECD PISA cycles show some results, which should be considered and analyzed in details

ICT Program/Software use index and student achievement (OECD PISA 2000 – 2006)

520

Use of computers in regular classroom lessons (OECD PISA 2009; Latvia)

Subject area	Students' reportAverageon ICT use in regularachievementclassroom lessonsLatvia)	
Reading	Never	494
	0 – 30 minutes	477
	31 - 60 minutes	439
	More than 60 minutes	431
Mathematics	Never	492
	0 – 30 minutes	471
	31 - 60 minutes	450
	More than 60 minutes	460
Science	Never	502
	0 – 30 minutes	490
	31 - 60 minutes	474
	More than 60 minutes	481

Frequency of use of computers at home and at school and student performance on the PISA test scale

		Student achievement in		
Frequency of use of		Latvia	(PISA 20	06 test
computers		scale)		
		Mathematics	Science	Reading
Frequency of	Almost every day	505	505	495 🔺
use of	Once or twice a	490	497	490
computers	week			150
-	Few times a month	471	470	459 ■
<u>at home</u>	or less	3/1	F/O	433
Frequency of	Almost every day	462	472	460
use of	Once or twice a	499	501	493
	week	477	501	473
computers	Few times a month	400	102	471
<u>at school</u>	or less	482	483	471 *

Same tendency in all countries

Same in Japan, Korea, New-Zealand, Germany, Sweden, Greece, Portugal, Italy, Turkey

Lack of appropriate methodological support

 Inese Dudareva defended doctoral thesis "The Usage of Sensors, Data Loggers and Interactive Whiteboard in the teaching/Learning Process of Physics" recently.

One of the conclusions was:

 "The emphasis in teacher's study programmes and inservice training courses should be put <u>not only on</u> <u>technical skills</u> enabling them to use the software, <u>but</u> <u>even more on the methodology</u>: for what purpose, how and why to use interactive whiteboard in physics lesson.

I.Dudareva. The usage of sensors, data loggers and interactive whiteboard in the teaching/learning process of physics. Summary of Doctoral Thesis. Riga, University of Latvia, 2013, ISBN 978-9984-45-671-3, 44 pp.

Problem of added value due to the use of ICT

- Added value of ICT to the instruction process and outcome – something we cannot gain without ICT
- Is it possible to determine precisely this added value in different subject areas?
- What are the main steps to reach understanding of added value in... (physics, history, languages ...)
- This set of issues is one of the most important (and serious) challenges for teachers

In-service and pre-service teacher training

- Both in-service and pre-service teacher training includes ICT courses, but :
 - ICT Training is about software in most cases, and less attention is payed to problems regarding ICT integration in instruction with the main aim of getting added value
 - It is important to provide pre-service and in-service teacher training which brings to:
 - General (routine) knowledge and skills of ICT use in instruction
 - Ability of innovative ICT use in different subject area
 - Ability to provide ICT related added value in instruction
 - Ability to use ICT in specific subject area with clear vision and understanding of «WHY?», «WHEN?» and «HOW?» ICT should be used...

My answer is: YES!

1) ICT is still a challenge for teachers!

And even more: 2) ICT is challenge also for teacher trainers

Thank You for Your Attention!

References

- Dudareva I. (2013). The usage of sensors, data loggers and interactive whiteboard in the teaching/learning process of physics. Summary of Doctoral Thesis. Riga, University of Latvia, 2013, ISBN 978-9984-45-671-3, 44 pp.
- 2. OECD (2011), PISA 2009 Results: Students on Line: Digital Technologies and Performance (Volume VI) http://dx.doi.org/10.1787/9789264112995-en
- 3. Geske A., Grīnfelds A., Kangro A., Kiseļova R. (2010). Ko skolēni zina un prot - competence lasīšanā, matemātikā un dabaszinātnēs. Latvija OECD valstu Starptautiskajā skolēnu novērtēšanas programmā. Rīga, Latvijas Universitāte, 1631pp.,ISBN978-9984-853-27-7.
- 4. Grinfelds A. (2007). Information and communication technology in schools of Latvia during three cycles of OECD PISA. Ghent, Belgium, ECER 2007, Network: 16. ICT in Education and Training.
- Geske A., Grinfelds A., Kangro A., Kiselova R. (2007). Competence in science, mathematics, and reading-input for future. Latvia in OECD PISA 2006. Latvia, Riga, ISBN-978-9984-798-45-5, 138pp.
- OECD PISA PGB (2006). Outline of the PISA 2006 Initial Report and Questionnaire Indices. Seoul, March 2006, Meeting of PISA Governing Board, 36 pp.
- 7. OECD (2005). Are Students Ready for a Technology-Rich World? What PISA studies tell us. OECD, France, ISBN 92-64-03608-3, 138 pp.